Våra liv är en rak väg genom rumtiden, som ett snöre och där all tid existerar samtidigt, dåtid, nuet och framtiden finns på en gång… I alla fall enligt Einstein, även om nyare forskning inom kvantfysiken/mekaniken motsäger delar av detta (men det berättade jag inte för Ebba…) så om vi skall åka till Marocko så har vi liksom redan gjort det och kommit hem också eftersom all tid existerar samtidigt.
Vet inte om hon var nöjd med svaret men hon började i alla fall prata om vilken godnattsaga hon ville att jag skulle läsa för henne.
Det blev Richard Scarrys Snabbköpsmysteriet.



Hade egentligen tänkt läsa den här sagan men det kanske hade blivit för mycket på en och samma kväll...
Kepler (demolish)Vs Einstein’s space jail of time
r ————– Exp (i wt) ———–S= r Exp (ì wt) Nahhas’ Equation
Orbit location———–Orbit light sensing ————– Visual orbit location
Particle/Newton —————- –Visual ————————– Wave/Quantum
Quantum – Newton=visual effects=relativistic effects=space-time confusions
S= visual distance; r = actual distance; v = speed and c = light speed
S = r Exp (i wt) = r [cosine (wt) + î sine (wt)]
P =d S/d t = v Exp (ì w t) + ì r w Exp (ì w t); v=d r/d t; v=w r
= v (1+ ì) [Exp (ì wt)] = visual velocity
E (definition) = m/2(m v + m’ r) ²; E = mc²/2 If v = 0; m’ r=mc
E (visual) = mp²/2 = mv²/2(1+ì) ² Exp 2(ì w t)
E (visual) = mv²/2(1 + 2ì -1) [cos2wt + ì sin2wt]
E (visual) = ì (mv²) [1-2sin²wt + 2i [sin (wt)] [cosine (wt)]
If wt = (2n+1) π/4
E (visual) = ì (mv²) [1-1 ± ỉ] = ± (mc²); v = c
2-Central force law Areal velocity is constant: r² (d θ/d t) =h Kepler’s Law
h = 2π a b/T; b=a√ (1-ε²); a = mean distance value; ε = eccentricity
r² (d θ/d t) = h = S² (d w/d t)
Replace r with S = r exp (ỉ wt); h = [r² Exp (2iwt)] (d w/d t)
(d w/d t) = (h/r²) exp [-2(i wt)]
d w/d t= (h/r²) [cosine 2(wt) - ỉ sine 2(wt)] = (h/r²) [1- 2sine² (wt) - ỉ sin 2(wt)]
d w/d t = d w(x)/d t + d w(y)/d t; d w(x)/d t = (h/r²) [ 1- 2sine² (wt)]
d w(x)/d t – (h/r²) = – 2(h/r²)sine²(wt) = – 2(h/r²)(v/c)² v/c=sine wt
(h/ r²)(Perihelion/Periastron)= [2πa.a√ (1-ε²)]/Ta² (1-ε) ²= [2π√ (1-ε²)]/T (1-ε) ²
Δ w/d t = (d w/d t – h/r²] = -4π {[√ (1-ε²)]/T (1-ε) ²} (v/c) ² radian per second
Δ w/d t = (- 4π /T) {[√ (1-ε²)]/ (1-ε) ²} (v/c) ² radians
Δ w°/d t = (-720/T) {[√ (1-ε²)]/ (1-ε) ²} (v/c) ² degrees; Multiplication by 180/π
Δ w°/d t = (-720×36526/T) {[√ (1-ε²)]/(1-ε)²} (v/c)² degrees/100 years
Δ w”/d t = (-720×3600/T) {[√ (1-ε²)]/(1-ε) ²} (v/c) ² seconds of arc multiplication by 3600
Δ w/d t = (-720×36526x3600/T) {[√ (1-ε²]/(1-ε)²} (v/c)² seconds of arc per century
The circumference of an ellipse: 2πa (1 – ε²/4 + 3/16(ε²)²- –.) ≈ 2πa (1-ε²/4); R =a (1-ε²/4) v=√ [G m M / (m + M) a (1-ε²/4)] ≈ √ [GM/a (1-ε²/4)]; m<>Exp (ì w t) ———->> S=r Exp (ì wt) Nahhas’ Equation
Orbit——–>> Orbit light sensing——>> Visual Orbit; Exp = Exponential
Particle —->> light sensing of moving objects———— >> Wave
Newton———>>light sensing———->> Quantum
Quantum = Newton x Visual Effects
Quantum – Newton = Relativistic = Optical Illusions
E (Energy by definition) = mv²/2 = mc²/2; if v = c
m = mass; v= speed; c= light speed; w= angular velocity; t= time
S = r Exp (ì w t) = r [cos (wt) + ì sin (wt)] Visual effects
P = visual velocity = change of visual location
P = d S/d t = v Exp (ì w t) + ì w r Exp (ì w t)
= (v + ì w r) Exp (ì w t) = v (1 + ì) Exp (ì w t) = visual speed; v = wr
E (visual energy= what you see in lab) = m p²/2; replace v by p in E = mv²/2
= m p²/2 = m v²/2 (1 + ì) ² Exp (2ì wt)
= mv²/2 (2ì) [cosine (2wt) + ì sine (2wt)]
=ì mv² [1 - 2 sine² (wt) + 2 ì sine (wt) cosine (wt)];v = speed; c = light speed
wt = π/2
E (visual) = ìmv² (1 – 2 + 0)
E (visual) = -ì mc² ≡ mc² (absolute value;-ì = negative complex unit) If v = c
w t = π/4
E (visual) = imv² [1-1 +ỉ] =-mc²; v = c
wt =-π/4+ỉln2/2; 2ỉ wt=-ỉπ/2 – ln2
Exp (2i wt) = Exp [-ỉπ/2] Exp [ln(1/2)]=[-ỉ (1/2)]
E (visual) = imv² (-ỉ/2) =1/2mc² v = c
Conclusion: E = mc² is the visual Illusion of E = mc²/2
PS: In case of E=mc² claims to be rest energy claims then
E=1/2m (m v + m’ r) ² = (1/2m) (m’ r) ²; v = 0
E = (1/2m) (mc) ²; m’ r =mc
E=mc²/2
Inga kommentarer:
Skicka en kommentar